Unique Paths

唯一路径

题目

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?

Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:

  1. Right -> Right -> Down
  2. Right -> Down -> Right
  3. Down -> Right -> Right
    Example 2:

Input: m = 7, n = 3
Output: 28

解析重点

1.这道题可以看作一道数学题,机器人总共走m+n-2步,m-1步用于向右走,因此总共路径数=C(m+n-2,m-1).
2.但是,这里我们可以把他看作动态规划的题目,以图中所示,

最靠边上的路径数都是1,然后他们旁边格子的路径数等于左边的格子加上上边的格子。

java代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i == 0 || j == 0)
dp[i][j] = 1;
else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
}
undefined